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Abstract. We have studied self-avoiding walks ( S A W S )  on a family of truncated n-simplex 
lattices which provide a family of fractals in which the fractal dimension d can be varied 
to a wide range while the spectral dimension d i s  held almost fixed. By means of exact 
renormalisation group transformations, we have calculated the critical exponents U, a and 
y and the connectivity constant p of the S A W S  for n = 5 and 6. We propose an approximate 
theory for calculating the critical exponents of the S A W S  on fractals which is expected to 
be accurate at large values of n. We show that the theory gives results which are in good 
agreement with exact values even for small values of n and leads to simple closed relations 
for the exponents. In particular, for the family of fractals considered here, a + y = 2. The 
results of the theory are also compared with various phenomenological proposals. 

1. Introduction 

In order to study the effect of excluded volume on equilibrium statistics of a polymer 
chain in a good solvent, a model of self-avoiding walks ( S A W S )  on a lattice was proposed 
[ 11. Other lattice models such as random walks ( RWS),  self-attracting self-avoiding 
walks (SASAWS),  true self-avoiding walks (TSAWS), trails and their silhouettes etc, [2 ,3]  
were proposed from time to time to represent polymers in different regimes. These 
lattice models have been the focus of much attention in recent years because from a 
statistical mechanics viewpoint they serve as generic examples of analysing scaling 
and  fractal properties [4,5]. In  this paper we concentrate on the critical behaviour of 
SAWS on fractals. 

The critical properties of S A W S  are known exactly in one and two dimensions [ l ,  61, 
at its upper critical dimensionality [4] and known to a high degree of accuracy in three 
dimensions [7-91. In another development, Flory [ 10,111 used mean-field arguments 
to reach the following formula 

1 J 
y = -  ( d s 4 )  

d + 2  

where d is dimensionality of space and 

1 In(R’) 
U =  lim --. 

v - ~  2 In N 

Here (R’) is the mean square end-to-end distance, N the number of monomers and  
v the end-to-end distance exponent (correlation length exponent for a magnetic system). 
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The Flory formula estimates accurately the value of v for periodic (Euclidean) lattices. 
The intriguing simplicity and remarkable accuracy of (1 . l )  has stimulated considerable 
work on understanding the basis of the Flory theory. However, an exact equation for 
v in the quantity ( 4 - d )  already disagrees with (1.1) at first order [12]. An expression 
in ( d  -1) which should also be exact, also disagrees with (1.1) at first order [13]. In 
general SAWS on disordered lattices present subtle difficulties which are not yet fully 
understood. 

Fractals, [ 141 which may be considered intermediate between regular and disordered 
lattices, offer a class of systems where the consequences of the loss of translational 
invariance may be studied in detail. Some exact results have been found in recent 
years for the critical exponents of SAWS on fractals [15-171. From these results one 
finds that, in contrast to regular lattices, the critical behaviour of SAWS on a fractal is 
influenced by a number of features of the fractal such as its Hausdorffs dimension d, 
the spectral dimension d, the lacunarity, etc. 

In this paper, we study SAWS on a family of truncated n-simplex lattices introduced 
by Dhar [ 181 and Nelson and Fisher [ 191. The lattice is defined recursively. The graph 
of the zeroth-order truncated n-simplex lattice is a complete graph on ( n  + 1) points. 
The graph of the ( r +  1)th-order lattice is obtained by replacing each of the vertices 
by the rth-order graph by a complete graph on n points. Each of the new n points is 
connected to one of the lines leading to the original vertex. The r is allowed to tend 
to infinity. The rth-order lattice has ( n  + 1)n‘ vertices and ( n  + l ) n r f ’ / 2  bonds. Each 
lattice point has coordination number n. The fractal and spectral dimensions of these 
lattices are given by [ 181 

- I n n  
In 2 

d = -  

and 

- 2 I n n  
d =  

l n ( n + 2 )  (1.4) 

respectively. 
The case n = 1 corresponds to an uninteresting case of mutually disconnected pairs 

of points, n = 2 corresponds to a linear chain. For n = 3 we get the truncated tetrahedron 
lattice [19]. For higher values of n the lattices are non-planar. As n is varied from 3 
to CO, dchanges from 1.5850 to CO, but dfrom 1.3652 to 2. Thus the truncated n-simplex 
lattices provide a family of fractals in which d can be varied to a wide range while 
keeping 2 almost ‘fixed’. This is in contrast to a family of Sierpinski-type fractals [20] 
studied by EleioviE et a1 [17] in which d and d vary from 1.5850 to 2 and from 1.3652 
to 2, respectively, as a characterising integer parameter 6 runs from 2 to CO [21,22]. 

The paper is organised as follows. In section 2 we briefly describe, for the sake of 
completeness and fixing the notation, the standard statistical model of linear polymers 
and model them by connected graphs of N links embedded in a lattice of No points, 
each link representing a monomer unit. In the critical phenomena language the infinite 
SAW is a critical O(s) model with s = 0 components [l]. Section 3 is devoted to 
calculation of the critical exponents for a truncated 5-simplex lattice using real space 
renormalisation group ( RG) theory. The 6-simplex lattice is considered in section 4. 
We develop in section 5 an approximate theory for the critical exponents of the  SAW^ 
and compare the results with exactly known values wherever possible. The paper ends 
with a brief discussion given in section 6 .  
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2. Lattice model of a linear polymer and critical exponents 

It has been assumed (see, for example, McKenzie [23]) that the total number C ,  of 
a distinct SAW of N steps and the total number P, of distinct SAW loops of N steps 
embedded in a lattice of No points and averaged over all possible positions of the 
starting point follow the following power law for very large N :  

Here p. is the connectivity constant and CY and y the associated critical exponents. 
The corresponding generating functions are defined to be 

X 

C ( x ) =  c CNXN 
N = 1 

I 

P ( x ) =  2 P,X\ 
N = l  

(2.3) 

(2.4) 

where x is a weight factor (fugacity) associated with each step of the walk. The leading 
singular terms of the above equations, when x approaches 1 / p  from below, are of the 
form 

C ( x )  - (1 - x ) - y  

P ( x )  - (1 - x)*-O.  

The above singular behaviour resembles the behaviour of the initial susceptibility 
and free energy of a magnetic system being close to its critical point. This remarkable 
resemblance between the SAW model and the s-component spin model in the limit 
s + 0 was first noted by de Gennes [ 121. 

The mean squared end-to-end distance (R') for N steps is also expected to obey 
the power law 

(R') - N'". (2.7) 
The corresponding generating function 

X 

R ( x )  = ( R L ) C , x " / C ( x )  
N = 2  

has the leading singular term 

which parallels the correlation length criticality of the model magnetic system. 
In order to determine the critical exponents for the SAW, we adopt the real space 

renormalisation group ( RG) approach [ 151. The 3- and 4-simplex lattices have already 
been studied by Dhar [15] and Dhar and Vannimenus [24]. These lattices belong to 
the same universality class as the Sierpinski gasket embedded in two and three 
dimensions respectively. 

R ( x ) - ( l  -x)-"' (2.9) 

3. The truncated 5-simplex lattice 

The basic geometrical unit of the construction of a truncated 5-simplex lattice is a 
pentagon with 5-corner vertices and bonds between every pair of vertices. Each vertex 
connected through a direct bond is termed a nearest neighbour. The pentagons of first 
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and ( r +  1)th orders are shown in figure 1. One finds seven restricted partition functions 
(figure 2 )  which should be sufficient for representing the generating functions P ( x ) ,  
C(x)  and R ( x )  at an arbitrary stage of the coarse graining process. The starting values 
(pertinent to a unit pentagon) of these functions are 

A,, = .y C , = A  
C,=D,,=E,,=F,=O (3.1) 

@ ( a )  F i rs t  -order pentagon 

(b) ( f + l ) t h  Order 

Figure 1. Graphical representation of a truncated S-simplex lattice. (a1 Graph of a 
first-order pentagon. ( b )  Schematic representation of the graph of the ( r +  1)th order. The 
shaded pentagons denote the graph at rth-order pentagons of which only the corner vertices 
are shown. 

Figure 2. A diagrammatic representation of the seven restricted generating functions for 
an rth-order pentagon. The interior structure of the pentagon is not shown. Only the 
corner vertices and the end points of the self-avoiding walks are shown.  
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where their rth-order values are the sum (weights) of all possible walks within the 
rth-order pentagon consistent with the constraint shown in figure 2 .  The recursion 
relations for these functions are 

A,+, =fo(A,, Br) ( 3 . 2 ~ )  

& + I  =fh(Ar, 4) (3.26) 

cr,, =f,(A,, B,, . . . $ 6 )  ( 3 . 2 ~ )  

Dr+t =&(Ar ,  B,, . . . , E r )  (3.2d) 

E,+, =.L(A,, B r , .  . . , E r )  (3.2e) 

Fr+i =fr(A,, B,, . . . , G,) (3.2.L 1 

(3.2g) Gr+i =fg(Ar, B y , .  . . , Gr). 

The forms of functions fa, . . . ,fe were generated on a computer, and  are given in 
appendix A. The forms of fl and f, are not needed in the evaluation of the critical 
exponents and, therefore, are not given here. The A and  B coordinates of a non-trivial 
fixed point (A*, B*, . . . , G*) of the RG transformations of (3.2) are found by solving 
( A l ) ,  ( A 2 )  independently o f the  similar RG equations ( A 3 )  for the other five coordinates. 
The exponent U is determined by the coordinates A and B only. The connectivity 
constant p is also determined by the A* and  B* coordinates of the fixed point. We 
therefore first consider the solution of ( A l ) ,  (A2) .  

The generating function P ( x )  is written as 

(3.3) 

where f ,  is a polynomial in A r - l ,  and  their combinations. An explicit form of 
the polynomial is not needed. For a lattice having a finite ramification number, the 
coefficients of the polynomial are always finite. If Ar-l  and  B,-, are less than the 
respective coordinates of the fixed point (A*, B*) ,  successive terms in (3.3) decrease 
because A, and  B, tend to zero with large r and the series converges. But if the value 
of A,-, and  are larger than A* and B*, respectively, the successive terms in (3.3) 
increase and  P ( x )  diverges. The value of x ( = x * )  corresponding to the fixed point 
(A*, B*) determines the connectivity constant, i.e. p = l /x* .  

Starting with (A, B )  = (x, 0) we find 

x* = 0.336 017 (3.4) 

and 

A* = 0.3265 (3.5) 

B* = 0.02791. (3.6) 

There are other fixed points of the recursion (3.3). The fixed points A* = B* = 0 and  
A * =  B*=m are the trivial. From (3.4) we get ~ = 2 . 9 7 6 0 3 .  Linearisation of the 
recursion relations ( A l ) ,  ( A 2 )  around the fixed point leads to one eigenvalue 

A I  =3.131 99 (3.7) 
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greater than unity. The eigenvectors corresponding to A I  determine the exponent v. 
Therefore 

In b 
In A ,  

v=-- - 0.604 905 

and 
In n 
In A ,  

CY = 2 -- = 0.595 47. (3.9) 

Here b = 2 .  As expected the value of v is lower than that of the 4-simplex lattice 
(=0.6740). 

In order to calculate the exponent y following Dhar [ 151, we choose a small positive 
number E and choose a value of x sufficiently close (-6) to x * ( = p - ' )  so that 

(3.10) 1 >> E >> 6 

and 
r,=ln(E/S)/ln A l .  (3.11) 

Thus for r < r, we have A, = A*, B, = B* and the recursion equations for Crrl, Drsl  
and Er+ ,  become, from (A3), (A4) and (A5), 

( 3 . 1 2 ~ )  

(3.126) 
( 3 . 1 2 ~ )  

Since the forms of the polynomials c,, d, and e, appearing in the above equations can 
easily be found from (A3)-(A5), they are not written here explicitly. Equations 
( 3 . 1 2 ~ - c )  are linear recursion equations and show that, for r < r o ,  C,, D, and E, 
increase as A >, where A +  is the largest eigenvalue of the matrix and characterises the 
linear transformation of (3.12). A +  has been found equal to 5.243 98. 

For r >  ro the coefficients A,, B,, D, and E, rapidly approach zero and C, tends 
to its asymptotic value which is proportional to AP. Dhar [15] has shown that 

Cr+l = c,(A*, B*)C,+c,(A*, B*)D,+c,(A*, B*)E,  
Dr+l = d,(A*, B*)C,+d2(A*, B*)D,+d3(A*, B*)E,  
E,, ,  = el(A*, B*)C,+e2(A*, B*)D,+e,(A*, B * ) E , .  

C ( x )  - K ( $)ra 

which leads to 

y = ln(A:/n)/ln A l .  

For the 5-simplex lattice, we have y = 1.4875. 

(3.13) 

(3.14) 

4. 6-simplex lattice 

The basic geometrical unit of the construction of a truncated 6-simplex lattice is a 
hexagon with six-corner vertices and bonds between every pair of vertices. The 
hexagons of first and ( r  + 1)th orders are shown in figure 3. Any two vertices connected 
through direct bond are nearest neighbours. The nine restricted generating functions 
corresponding to this lattice are shown in figure 4. The starting values of these functions 
are 

A , = x  Do=& 
Bo= CO= E o = .  . . = Zo = O  (4.1 ) 
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( a )  First - order hexagon 

' ( b ) ( r + l ) ' h  order 

Figure 3. Graphical representation of a truncated 6-simplex lattice. ( a )  Graph of a 
first-order hexagon. ( b )  Schematic representation of the graph of the ( r +  1)th order. The 
shaded hexagons denote the graph of rth-order hexagons of which only the corner vertices 
are shown. 

Figure 4. A diagrammatic representation of the nine restricted generating function of an 
rth-order hexagon. The remainder is as in figure 2. 

where their rth-order values are sums of all possible walks within the rth-order hexagon 
consistent with the constraint shown in figure 4. The recursion relations for these 
functions are given in appendix B. As argued in the case of the 5-simplex lattice, the 
recursion relations for A,,,  , B,,, and Crtl involve only A,,  B,, C, and their combina- 
tions and  are independent of other functions. 
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The (A*, B*, C*) coordinates of a non-trivial fixed point (A*, B*, C*, , . , , I * )  of 
the RG transformation are, therefore, found by solving the above recursion relations 
independently of the similar RG equations for other six coordinates. Starting with 
(x, 0,O) we get the fixed point 

A* = 0.262 352 

B* = 0.017 588 (4.2) 

C* = 0.000 701 1 

and the corresponding fugacity x* = 0.271 66. The connectivity constant p = 3.681 07. 
The linearisation of the recursion relations (Bl),  (B3) about this fixed point yields 

only one eigenvalue, A ,  = 3.4965, for which the value is higher than unity. Thus 

In 2 
In 3.4965 

U =  = 0.5537 

and 

In 6 
In 3.4965 

a = 2 -  = 0.5686. 

(4.3) 

(4.4) 

Following the method described briefly in the preceding section and the relations for 
D r + , ,  E,,, and F,,, given in appendix B (B4), (B6), we find the matrix which 
characterises the linear transformation of the recursion relation of these functions and 
for which the largest eigenvalue, A, = 6.267 09. Using relation (3.14) we find that for 
a 6-simplex lattice 

y = 1.500 094. 

5. An approximate theory for the critical exponents of SAWS on n-simplex lattices 

Here we describe an approximate theory for calculating the critical exponents of SAWS 

on n-simplex lattices when n + W. For this we first note that for large n, the coordinates 
of the fixed point corresponding to a swollen state behave as 

(5.1) 

Thus B*,  C*, . . . approach zero faster than A* as n is increased. Therefore, for 
calculating U for large n we consider the generating function for the configuration A 
only and neglect other configurations, i.e. put B, = C, = . . . = 0 for all values of r. This 
leads to following simple recursion relation for A: 

A,+, = A 2 +  ( n  -2)A3+ ( n  - 2 ) ( n  -3)A4+.  . . + ( n  -2)! A". (5.2) 

Similarly, for calculating y we consider the functions A and D (of figure 3) and 
put the others equal to zero. The recursion relation for D is found to be 

Dr+, = D,[1 + ( n  - l )A*+  ( n  - l ) ( n  -2)A**+. . , + ( n  - l ) !  A*"-' 1 (5.3) 

where A* is the fixed point of (5.2). Using these relations we calculate p, U, CY and y 
for a large number of lattices. The results which are designated with subscript A l ,  are 
given in table 1. Though as mentioned above, this method is expected to give accurate 
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Table 1. The  critical exponents I U, y, U 1 a n d  the connectivity constants ( w )  together with 
the eigenvalues A,+, for S A W ,  on family truncated ti-simplex lattices as  obtained from the 
approximate theory of section 5 are  given. The fractal dimension d and the spectral 
dimension d' are  also given. 

n d' B u * = 1  /.l 

3 
4 
5 
6 
7 
8 
9 

I O  
15 
16 
20 
30 
40 
50 
60 
70 
80 
90 

100 
200 
300 
400 
500 

1000 

1.3652 
1.5474 
1.6541 
1.7233 
1.7712 
1.8061 
1.8326 
1.8532 
1.9116 
1.9185 
1.9383 
1.9627 
1.9738 
1.9801 
1.9841 
1.9868 
1.9887 
1.9902 
1.9914 
1.9962 
1.9976 
1.9983 
1.9987 
1.9994 

1.5849 
2.00 
2.3219 
2.5849 
2.8073 
3.00 
3.1699 
3.3219 
3.9068 
4.00 
4.3219 
4.9068 
5.3219 
5.6438 
5.9068 
6.1292 
6.3219 
6.49 18 
6.6438 
7.6438 
8.2288 
8.6438 
8.9657 
9.9657 

0.6 180 
0.4406 
0.3395 
0.2747 
0.2299 
0.1971 
0.1722 
0.1527 
0.0964 
0.0897 
0.0698 
0.0445 
0.0324 
0.0254 
0.0208 
0.0176 
0.0152 
0.0134 
0.0120 
0.0057 
0.0037 
0.0027 
0.0022 
0.0010 

A,, I ___ 
2.3819 
2.7304 
3.0548 
3.3604 
3.6509 
3.9288 
4.1958 
4.4550 
5.6339 
5.8529 
6.6852 
8.5425 

10. I836 
11.6772 
13.0607 
14.3591 
15.5872 
16.7567 
17.8761 
27.3043 
34.9 135 
41.5 193 
47.4702 
7 1.6458 

Y \ I  a 4 1  

0.798 
0.690 
0.620 
0.571 
0.535 
0.506 
0.483 
0.463 
0.400 
0.392 
0 364 
0.323 
0.298 
0.282 
0.269 
0.260 
0.252 
0.245 
0.240 
0.209 
0.195 
0.186 
0.179 
0.162 

1.265 0.7342 
1.380 0.6198 
1.441 0.5588 
1.478 0.5217 
1502 0.4973 
1.519 0.4805 
1.532 0.4678 
1.541 0.4588 
1.566 0.4336 
1.569 0.4308 
1.576 0.4232 
1.585 0.4144 
1.589 0.4105 
1.591 0.4082 
1.593 0.4066 
1.594 0.4054 
1.595 0.4045 
1.596 0.4036 
1.597 0.4029 
1.602 0.3979 
1.605 0.3946 
1.607 0.3920 
1.609 0.3900 
1.617 0.3829 

results for large n, we give results for small n also so that comparison can be made 
with exact values. The following observations are in order. ( i )  The values of v are 
close to those found exactly. For n = 3, (5.3) gives an exact recursion relation. The 
error, however, increases initially as n increases but, as argued above, should decrease 
with higher values of n. ( i i )  The value of v +  0 as n + m .  ( i i i )  The values of exponent 
y known exactly for n = 3 , .  . . , 6  are close to the value found here. The error in y 
decreases rapidly as n increases. ( iv)  As n +E, y-1.618, a constant. 

The series of (5.2) can be approximated (for large n )  to give 

A,,, = ( n  - 2 ) !  A:  e '  '1. (5.4) 
The fixed point of this relation is found to be 

l + s  A* =- 
n + l  

where 

However, we note that the relation 

( 5 . 5 )  

(5.6) 
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where p = 0.6180- (8- 1)/2 (this value represents the fixed point of the 3-simplex 
lattice) gives a better representation of the fixed points of (5.2). 

The linearisation of (5.2) about its fixed points give eigenvalues 

1 
A I  = ( n  + 1 ) - -  

A* (5.7) 

which determine the exponent U. From (5.6) and (5.7) we find 

A l = ( n + l ) P .  (5.8)  

This simple looking relation is found to scale the eigenvalues very well for all values 
of n. From (5.8) and the definition of the exponent U we find the following appropriate 
relation: 

j=p i2d-r i /L2  U 1n2(2"1+1)1). (5.9) 

For large n (5.9) reduces to a simple form 

2 
2pa. 

U-- (5.10) 

The relation (5.9) and (5.10) (for large n only) give a very good representation of v 
found from the numerical solution of (5.2). 

It may be noted that the eigenvalue found from (5 .3)  at the fixed point A* is 
given as 

A, = n. ( 5 . 1 1 )  

This leads to a very simple scaling relation between v, CY and y: 

y =  v d  

f f + y = 2 .  

and (5.12) 

These relations are very well satisfied by the values in table 1. Further, we note from 
(5.10) and (5.12) that for large n(d2 .2 )  

1 

P 
y - - =  1.618. (5 .13 )  

This is an interesting result. It indicates that the parameter p which appeared in (5.6) 
is the inverse of y in the limit l / n  + 0. 

The approximate theory given here can be improved systematically by including 
terms coriesponding to other configurations. For example, we can include terms linear 
in B in (5.2) and write a recursion relation for B which has terms involving only A. 
This leads to following relations: 

A , , , = A ( A + ( n - 2 ) A 2 + . .  . + ( n - 2 ) A " - ' + B ( 2 ( n - 2 ) ( n - 3 ) A 3  

+ 5 ( n - 2 ) ( n - 3 ) ( n - 4 ) A 4 + + . . . + )  ( 5 . 1 4 ~ )  

and 

B , + , = A 4 + 2 ( n - 4 ) A 5 + 3 ( n - 4 ) ( n - 5 ) A 6 + .  , .  . (5.14b) 
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These recursion relations give values of v which are somewhat lower than those 
given by ( 5 . 2 )  for small values of n, but become almost identical for n 3 150. The 
difference in the values of v found from these two equations is largest around n -30. 

6.  Discussion 

In figure 5 we compare the values of v obtained from ( 5 . 2 )  (or ( 5 . 9 ) )  designated vAl 
and from (5 .4~1,  b )  designated vAZ with the exact results. We also give in this figure 
values of v found from phenomenological relations of ( 6 . 1 ) ,  ( 6 . 2 )  and ( 6 . 4 )  given 
below. We find that (5 .4a ,  b )  give values of v which are very close to exact values 
even for small values of n. Thus the method described in the above section provides 
a very simple and  reasonably accurate recipe for calculating critical exponents for 
SAWS on fractals. 

Motivated by the Flory formula (1.1) several attempts have been made in recent 
years to find closed relations for critical exponents [ 1 6 , 2 5 , 2 6 ]  of SAWS on fractals. 
The following phenomenological relations were proposed for v :  

and  

3 
vK=- 

3 + 2 d  

4 + 6  
4 6  . U A = -  ( 6 . 3 )  

Relation (6.1) was proposed by Kramer [ 2 5 ]  and Sahimi [ 2 6 ]  and appears to be a 
straightforward generalisation of the self-consistent Flory formula (1.1) to fractals. 

o.eoC 

0 . 7 5 1  

0.701 

~ 

3 0.65-  

o’601 0.55 

0,50i 0.L5 2.00 3.00 L.00 5.00 6.00 7.00 

n 

Figure 5. A comparison of the results obtained from exact calculations uE (full circles) 
with v A ,  (full curve), vAz (dotted curve), and vRTV (chain curve) and vHB (short broken 
curve). 
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Equation (6.2) was given independently by Rammal et a1 [ 161 and Sahimi [26]. The 
last relation (6.3) is due to Alexandrowicz [27] and is valid for 4/3 S d s 4. EleioviE 
et a1 [17] have found that (6.3) highly overestimates v. We find that while (6.2) gives 
values for v they are somewhat underestimated yet are consistent for all values of n. 
Equation (6.1) underestimates the values of v for small values of n and highly 
overestimates at large values of n. 

A more sophisticated relation than given above ((6.1)-(6.3)) has recently been 
proposed by Halvin and Ben Avraham [28] and justified by Bouchaud and Georges 
[29] and Aharony and Harris [30]. Their relation involves the spreading dimension, 
d,, [31] in addition to d and 2, i.e. 

- 4ds-d  
vHBd = 

2 + 2ds - 2'  (6.4) 

Taking d, = d for the n-simplex lattices we find that (6.4) somewhat overestimates the 
value of v [29] though is better than (6.1) and (6.3). 

To demonstrate the correctness of the relations (6.1)-(6.4) we plot in figure 6 
a( =2-  vd) as a function of In n. The exact values of a found for n = 3 , 4 , 5  and 6 are 
also shown in the figure. We find that our approximate theory gives reasonably good 
values of a though somewhat underestimated. This is a consequence of v being 
somewhat overestimated. As expected, the broken curve, which corresponds to the 
values of v designated vAz in figure 5 and is found from (5.14a, b ) ,  gives better agreement 
with the exact results for n = 5 and 6 as obtained in this paper and also for n = 3 and 
4 as obtained by Dhar [ 151. We also find that the Rammal et a1 [ 161 relation, although 
it overestimates a for all values of d, gives a qualitatively better result than that of the 
relation corresponding to (6.1) which makes a negative rapidly as d is increased. 
Equation (6.4) gives values for a which are always underestimated. The error increases 
with n. 

- 1  0.60 

Ln n 

Figure 6. A comparison of the results of the critical exponent a obtained from the exact 
calculations with those obtained from the approximate theory and from phenomenological 
relations. Labelling is the same as in figure 5 .  
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1.60- 

1 1.20- 

f 

Attempts have also been made to find a closed expression for the exponent y. 
Alexandrowicz [27] found the relation 

8 
4 + d  ?A=- 

from random walks through a progressive exclusion of walks with loops and is 
connected with (6.3) by the relation y u d  = 2 .  The other relation 

6 
Y P P  = - 2 + 6  

has been suggested by Pietronero and Pelity [32]. 
In  figure 7 we plot the values of y obtained from the above relations and from the 

approximate theory of section 5 (or from (5.9) and (5.12)). We also plot in the figure 
the known exact values. The values of y found from the approximate theory are in 
good agreement with the exact values and  also exhibit variation with 6 which is similar 
to those found by EleioviE et a1 [17]. However, the relations of (6.5) and (6.6) give 
values of y which decrease with d (or In n )  which is in contradiction with known 
behaviour of y with d. 

0.801 

\ \  

1 I I I 
0 2.00 4.00 6.00 8.00 

Qn n - 
Figure 7. The  critical exponent y as  a function o f  In n. The fu l l  curve represents the values 
( y A , )  obtained from the approximate theory of section 5 and  the short  broken curve, ya 
(6.4) and  the long broken curve, ypp ( 6 . 5 ) .  Exact values ( y t )  are  shown by full circles. 
Exact values are  \ e r>  close to the full curve. 

I n  conclusion we wish to emphasise that none of the phenomenological relations 
given in the literature for the critical exponents of SAWS on fractals represents them 
correctly. The relation (6.2) for v and the corresponding relation for a appears to be 
better than others. The suggestions that if d' and d are equal, the critical exponents 
on fractals are an  analytical continuation of their values on a regular integer- 
dimensional lattice [33,34] has recently been found not to be correct by Dhar [22]. 
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A very simple approximate theory given in section 5 appears to give reasonable 
values of the critical exponents even for small values of n where the error is expected 
to be large. The exponents are very well approximated by (5.9) and (5.12). These 
equations appear to be best among the suggested relations for the family of fractals 
studied in this paper. The predictive power of the theory can further be improved by 
systematically incorporating more terms in (5.2) and (5.3). 
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Appendix A 

Here we report the recursion relations found for the 5-simplex lattice 

A,+, = A2+3A3+6A4+6A5+ 132AB4+ 132Bs+ 18A2B2+96A'B' 

+12A3B+ 78A3B'+30A4B 

B,+, = A4+2A5+ 13A4B+32A3B2+4A3B+88A'B' 

+220AB4+ 186B5 + 22 B4 

C,+, = C(  1 +4A + 12A2+ 24A3+ 24A4+24A2B + 72A2B2 +72A3B) 

+D( 12A2+ 48A3 + 72A4+ 72A2B +456A'B2 +288A3B 

+528AB3+528AB4)+ E(24A4+96A3B+ 528B') 

Dr+, = C ( A 2  + 4A3 + 6A4+ 6A2B + 24A3 B + 38A2B2 + 44AB3 + 44B4) 

+ D(3A2+ 14A'+26A4+ 32A2B + 140A3B + 44AB'+ 374A2B2 

+636AB3 + 44 B3 + 548 B4) 

+E( 12A4+72A3B +208A2B2+592AB3+ 856B4) 

E,,, = C(A4 + 4A3B + 22B4) + D(6A4 + 36A3 B + 104A2B2 + 296AB3 

+428B4)+ E(5A4+472AB3+ 1042B4). 

The subscript r has been dropped from the right-hand side of the above equations. 

Appendix B 

Here we present the recursion relations found for the 6-simplex lattice. 
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A,+, = A’( 1 + 36B2+ 384B’ + 5544B4+ 4992B3C) +4A3( 1 + 78B2 + 648B’ +432B2C) 

+mi4( 1 + 10B +80B‘+ 10C2+40BC)  + 24A5( 1 + 2 C  + 9 B )  

+24AB3(1 +22B+362B2+636BC +472C’) 

+48B4( 11B + 137B2+ 521C2+428BC) (B1) 

B,+, = A4( 1 + 26B + 144BC + 324B2 +6A’) + 4A5( 1 + 4 C  + 16B) 

+4A’B’(44B+905B2+ 1272BC +708C‘) 

+4A’B( 1 + 16B + 308B2 + 208BC) 

+8AB3( 55B + 822B2+ 2140BC + 2084C2) 

+B2(22B2 + 372B’ + 5440B4+ 23 520B3C + 48 160B2C2 

+76 800BC3 + 94 336C4) 032) 

C,,, = A 6 + 6 A 5 ( C + 2 B ) + 4 A Z B 2 ( 9 A 2 + 5 2 A B ) +  18A2B’(159B+236C) 

+AB4(2568B+6252C) +2940B6+ 14 448B5C +43 200B4C’ 

+94 336B3C3+541 568C6 (B3) 

Dr+, = D[ 1 +20A’( 1 + 3 B +  30B2+ 1 14B’) +60A3( 1 + 6 8  + 8C +30B2) 

+120A4( 1 + C + 6B) + 5A( 1 + 24A4+ 528B4) + 2640B4(A + B + C ) ]  

+E[20A2(1 + 9 B +  114B’+624CB2+ 1350B’) 

+120A3(1+ 12B+36BC+102B2) 

+120A4(3 + 3 0 B + 6 C  +4A) +240B3(11 + 148C) 

+240B4( 11 + 181A + 1488 + 214C)]+ F [  120A3(3A2 + 4AB + 68B‘) 

+120A4( 1 + 5C + 23B) +960AB3(24A + 59C) 

+240B4( 11 + 269A + 307B) + 521 C ]  (B4) 

E,,, = D[A2(l+9B+114B2+1350B’+624CB2)+6A’(1+12B+102B’+26BC) 
+6A4(3+4A+30B+6C)+4AB3(33+444C)  

+4B4(33+543A+444E+642C)] 

+E[3A’( 1 + 16B+374B2+ 5120B3+ 1416BC2+4872CB2) 

+3A3(7+ 140B+ 1786B2+976BC+ 152C2) 

+6A4( 13 +21A+ 197BS 50C)+ 11AB2(6+318B+4168C2 

+7592BC) + 6B2( 11B +9600C3 + 1380BC’) 

+12B4( 137+2314A+ 19748+ 5562C)l 

+F[12A4(3+ 10A+ 103B+28C) 

+48AB3(37+ 1197B+2169C 

+1200C2) + 24A2B2(26+9941? + 865C) 

+24A3B(9+265B+ 120C)+24B4(107+2555B+8814C) 

+384B2C2(887B + 736C)l (B5)  
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F,,, = D[A4( 1 + 3A+ 23B + 5C)  + 4AB( A’ + 17A2B + 48AB’f 118CB’) 
+2B4(11 +269A+307B+521C)]  

+E[2A4(3+ 10A+ 103B+28C) + 8AB3(37 + 1197B +2169C 

+1200C‘) +8A2B2( 13 + 4 9 7 B t 4 5 5 C )  
+4A3B(9 + 2658 + 4 0 C )  +64B2C‘(887B +737C) 
+4B4( lo? + 2555 B + 88 14C 13 
+F[A4(5 + 21A + 168B) + 2AB’( 236 + 12 793 B + 29 232C) 

+4A2B(1927B2+ 11 ?92C’+ 1692BC) 

+4B2(29?A3+ 111 808C3+80 816BC’) 

+2B4(521+74000C+16 580B)+541 568C4(B+C)] .  (B6) 
Since the recurrence relations of function G, H and I are not needed for the evaluation 
of the critical exponents of the SAW, they are not given here. 
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